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Abstract The problem of an infinite periodic array of identical floating elastic plates subject to forcing
from plane incident waves is considered. This study is motivated by the problem of trying to model wave
propagation in the marginal ice zone, a region of ocean consisting of an arbitrary packing of floating ice
sheets. It is shown that the problem considered can be formulated exactly in terms of the solution to an
integral equation in a manner similar to that used for the problem of wave scattering by a single elastic
floating plate, the key difference here being the use of a modified periodic Green function. The convergence
of this Green function in its original form is poor, but can be accelerated by a transformation. It is shown
that the results from the method satisfy energy conservation and that in the particular case of a fixed rigid
rectangular plate which spans the periodicity uniformly the solution reduces to that for a two-dimensional
rigid dock. Solutions for a range of elastic-plate geometries are also presented.

Keywords Elastic plates · Ice sheet · Periodic Green function · Water waves

1 Introduction

The thin elastic plate of shallow draft floating on the surface of water can be used to model a range
of physical systems, for example ice floes or so-called very large floating structures, which are of par-
ticular interest in proposals to build offshore floating runways. It is also of theoretical importance as
one of the simplest models of hydroelasticity. It is not surprising therefore that the floating elastic
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plate has been the subject of a significant body of research. Much of this research, especially that
which was motivated by the construction of very large floating structures, is summarised in the review
papers by Kashiwagi [1] and Watanabe et al. [2]. The review paper by Squire et al. [3] summarises
the research prior to 1995 which was motivated by modelling sea-ice floes, but does not include the
more recent work, [4, 5], in which the solution for wave scattering by a three-dimensional ice floe is
presented.

Our aim here is to present a method of solution to the problem of wave scattering by an infinite periodic
array of floating elastic plates of finite dimension. This study is motivated by trying to further understand-
ing of the problem of wave scattering in the marginal ice zone. The marginal ice zone consists of a vast
field of broken ice floes each of which have a thickness (typically ≈ 1–2 m) much smaller than the typical
horizontal lengthscale of the floe, or of the wavelength of waves supported by the floe, and it is usual to
model the ice floe as a thin elastic plate. These ice floes are subject to intense wave forces whose source
originates from the open ocean. On account of the fact that the floes are themselves able to support wave
propagation, wave energy is capable of travelling large distances within the marginal ice zone where it can
assist ice breakup.

Previous work aimed at trying to model wave interaction by isolated three-dimensional regular and
irregular ice floes has been performed by Meylan and Squire [4] and Meylan [5], respectively. For more
complicated arrangements involving an arbitrary, but finite, number of irregular ice floes see [6], although
the number of floes that can be dealt with is limited by numerical considerations. Although this latter
work includes the effect of interaction between neighbouring ice floes, it does not allow one to capture
the effects of a plane wave incident upon a very large linear array of ice floes. One method of overcoming
this, which also allows significant analytic progress to be made, is to consider wave scattering by an infinite
periodic array of identical ice floes, being irregular in shape. Of course ice fields are not periodic, but
this arrangement does provide some information, especially if some kind of statistical averaging of the
results over the floe geometries and spacings is performed. For example, we might expect that a random
array of ice floes would scatter equivalently to an average of periodic arrays of identical floes of different
spacings and geometries. Furthermore, the solution readily lends itself to an assumption that the rows of
periodic ice floes are wide-spaced. This method was used by Evans and Porter [7] and would allow accurate
approximations to wave scattering by multiple rows of non-identical ice floes. Central to such a procedure
is knowledge of the scattering process for each row in isolation.

The problem of determining the scattering of waves by periodic arrays of obstacles subject to wave forc-
ing has received considerable research attention and spans a broad range of physical disciplines including
solid-state physics, acoustics, optics, etc. In many applications, the interest centres on arrangements which
are periodic in two directions (for example, the study of crystallography).

In the present context of water-wave propagation and its interaction with flexible surface structures,
Chou [8] has investigated the effect of an infinite doubly periodic array of elastic plates on wave prop-
agation. In the modelling of the plate equations, Chou incorporates both bending stiffness and tension
effects, so that the discussion of the results not only includes the case of pure bending of elastic plates
in the absence of compression forces (as considered here), but also, by setting the stiffness to zero,
pure tensional effects which would describe, for example, periodic arrays of taut membranes. However,
in contrast to the work described here, the doubly periodic configuration allows significant simplifica-
tion in the solution procedure by applying Floquet’s theorem to reduce the problem to one on a fi-
nite domain with periodic boundary conditions. Moreover, problems involving infinite doubly periodic
structures only offer information about the possibility of wave propagation throughout the array (in
the form of so-called pass-bands or stop-bands) and cannot address the diffraction of plane waves from
infinity.

For arrays which are periodic in one direction only, the situation is different and diffraction-grating
effects occur. Thus, for an incident plane wave of a particular given wave frequency, a finite number of
distinct plane waves propagating away from the array at certain discrete angles will occur. In the context
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of water waves and fixed periodic arrays, Twersky [9] was able to solve the problem of a periodic array
of vertical circular cylinders. The uniformity of the configuration in the depth coordinate implies that the
resulting equations also describe two-dimensional acoustic-wave scattering, in this case by circular cylinders.
The problem of Twersky [9], who used Schlömilch series to sum slowly convergent series involving Hankel
functions, was re-considered by Linton and Evans [10] who used a so-called multipole method. For periodic
arrays of rectangular cylinders extending uniformly through the depth, Fernyhough and Evans [11] used
domain decomposition and mode matching to derive an integral-equation formulation to the problem. In
order to consider more general cylinder profiles, boundary-integral methods are inevitable and require the
use of a periodic Green function. In its most basic form, the Green function consists of a series involving
Hankel functions which is slowly convergent and unsuitable for numerical computation. Hence Linton
[12] compared a number of different representations of the periodic Green function, designed to increase
the convergence characteristics. Porter and Evans [13] used the work of Linton [12] to compute so-called
Rayleigh–Bloch waves (or trapped waves) along a periodic array of cylinders of arbitrary cross-section. In
recent years a number of papers have concentrated on ideas similar to those of Porter and Evans [13], a
primary motivation being the connection between large wave responses in large finite arrays of cylinders
and the trapped waves in infinite periodic arrays (see [14]).

In contrast to the body of work cited in the previous paragraph, the present work differs significantly in
two respects. First, the problem involving periodic elastic plates on the water surface implies that, although
the periodicity extends only in one direction, the problem uses fully three-dimensional plates. Secondly, the
scattering obstacles are neither fixed (as above) nor rigid, but are in fact themselves capable of supporting
wave motions. Thus, the coupling between the plate motion and the motion of the water adds an extra
degree of complication to the problem. We consider a special Green function which is built up out of
multiple images as was done in [15] for the case of wave scattering in a wave tank with rigid walls. Our
method may be considered as a generalisation of Kashiwagi’s in which we allow the waves to be incident
at an angle and the body spacing to be arbitrary. We also use a different method to sum the infinite series
of Green functions that was used by Kashiwagi.

The outline of the paper is as follows. In Sect. 2 the non-dimensional small-amplitude equations for
time-harmonic motion are formulated. In Sect. 3, an integral equation is derived connecting the motion
of the plate to that of the water. In doing so the periodic Green function is defined in terms of the three-
dimensional free-surface Green function. In Sect. 4, a variational principle for the motion of the plate is
defined and a Rayleigh–Ritz approximation is used to reduce it to a linear system of equations. The same
approximation is used in the integral equation to provide a second set of linear equations coupling the
motion of the plate to the water. Sect. 5 concentrates on improving the otherwise slow convergence of
the periodic Green function and Sect. 6 describes how the far-field reflected and transmitted waves are
calculated from the integral formulation. Finally, in Sect. 7 a range of numerical results are presented and
discussed and the work is concluded in Sect. 8.

2 Problem formulation: an infinite array of elastic plates

We begin by formulating the problem. Cartesian coordinates (x, y, z) are chosen with z vertically upwards
such that z = 0 coincides with the mean free surface of the water. An infinite array of identical thin elastic
plates float on the surface of the water, periodically spaced along the y-axis with uniform separation l. The
problem is to determine the motion of the water and the plates when plane waves are obliquely incident
from x = −∞ upon the periodic array of plates.

The plates are assumed to be of zero draft and occupy x ∈ �m, −∞ < m < ∞ on z = 0 where x = (x, y)
represents the Cartesian vector lying in the mean free surface. The plates are assumed to have arbitrary
shape, and periodicity implies that if x ∈ �0, then xm = (x, y + ml) ∈ �m, −∞ < m < ∞. This array of
plates is shown in Fig. 1.
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2.1 Elastic-plate equations

The equation of motion for the plate elevation W(x, y, t), where t is time, is given by the thin-elastic-plate
(or Kirchhoff) equation,

D∇4
hW + ρih

∂2W
∂t2

= p, (1)

[16, pp. 79–104] where D is the flexural rigidity, ρi is the density, and h the uniform thickness of the
elastic plate. Here, p is the excess pressure (i.e., excluding atmospheric pressure and the weight of the
plate) exerted by the fluid and ∇2

h is the two-dimensional horizontal Laplacian in the plane z = 0 (we shall
reserve ∇2 to mean the three-dimensional Laplacian). In addition, on the free edges of the plates, x ∈ ∂�m,
boundary conditions expressing the vanishing of bending moment and shearing stress apply, which are
written as[

∇2
h − (1 − ν)

(
∂2

∂s2 + κ(s)
∂

∂n

)]
W = 0, (2)

[
∂

∂n
∇2

h + (1 − ν)
∂

∂s

(
∂

∂n
∂

∂s
− κ(s)

∂

∂s

)]
W =0, (3)

where ν is Poisson’s ratio and

∇2
h = ∂2

∂x2 + ∂2

∂y2 = ∂2

∂n2 + ∂2

∂s2 + κ(s)
∂

∂n
.

Here, κ(s) is the curvature of the boundary, ∂�m, as a function of arclength s along ∂�m; ∂/∂s and ∂/∂n
represent derivatives tangential and normal to the boundary ∂�m.

Equations (2) and (3) can be established from Porter and Porter [17] who considered the more com-
plicated case of a plate of varying thickness and derived the edge conditions from a variational principle
similar to the one used later in this paper. A direct derivation of the edge conditions from the underlying
constitutive equations for a thin elastic plate can be found elsewhere, for example [18, Chapter 8]. We
remark that in the case where the boundary of the elastic plates is piecewise linear, such that κ(s) = 0, the
equations above reduce to the simpler form(
∂2

∂n2 + ν
∂2

∂s2

)
W = 0

and(
∂3

∂n3 + (2 − ν)
∂3

∂n ∂s2

)
W = 0.

2.2 Equations of motion for the water

We consider water of infinite depth. Under the usual assumptions of small-amplitude waves above an incom-
pressible and irrotational fluid, there exists a velocity potential �(x, y, z, t) satisfying Laplace’s equation
together with the appropriate linearised boundary conditions, namely

∇2� = 0, −∞ < z < 0,

�, |∇�| → 0, z → −∞,
∂�

∂z
= ∂W

∂t
, z = 0,

−ρ ∂�
∂t

− ρgW = p, z = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4)
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Fig. 1 A schematic diagram of the periodic array of floating
elastic plates
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Fig. 2 Diagram of the four plate geometries for which we
will calculate solutions

where the pressure, p, has already been introduced in (1), ρ is the water density, and g is gravitational
acceleration. W is the time-dependent displacement of the plate when x ∈ �m. When x �∈ �m, we take
p = 0 in the above and now W represents the elevation of the water surface. In addition to (4), radiation
conditions at infinity need to be applied and these will formally be introduced later.

2.3 Non-dimensionalising the variables

We non-dimensionalise the spatial variables with respect to a length parameter L (for example, L may be
derived from the area of the plate or L may be the characteristic length (D/ρg)1/4) and the time variables
with respect to

√
L/g. The dimensionless variables are therefore given by

(x̄, ȳ, z̄, W̄) = 1
L
(x, y, z, W), t̄ = t

√
g
L

, p̄ = p
ρgL

and �̄ = �

L
√

L g
.

Using the dimensionless variables, we may express Eq. 1 combined with the last equation of (4) as follows:

β∇̄4
hW̄ + γ

∂2W̄
∂ t̄2

= p̄ = − ∂�̄

∂ t̄

∣∣∣∣
z=0

− W̄, (5)

where the dimensionless parameters associated with the motion of the plate, β and γ , representing the
‘stiffness’ and ‘mass loading’ of the plate, respectively, are given by

β = D
ρgL4 and γ = ρih

ρL
.

This notation is based on Tayler [19, pp. 122–128].
Hereafter, we will work with dimensionless variables only but omit the overbar from all variables for

reasons of clarity. Note that from now on we will use l to mean the non-dimensional floe separation l̄ = l/L.
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2.4 The single-frequency equations

We will consider the solution for a single frequency and we can therefore represent the displacement and
the potential as the real parts of complex functions in which the time dependence is e−iωt, where ω is the
dimensionless radian frequency, i.e.,

W(x, y, t) = Re
[( i
ω

)
w(x, y)e−iωt

]
,

�(x, y, z, t) = Re
[
φ(x, y, z)e−iωt] ,

where we have introduced an additional scaling for W to simplify the equations which follow.
Therefore Eq. (5) becomes

β∇4
hw(x, y)+ (1 − ω2γ )w(x, y) = ω2φ(x, y, 0). (6)

Combining the non-dimensionalisation with the time assumption we also have from (4)

∂φ

∂z
= w, z = 0 (7)

with

∇2φ = 0, −∞ < z < 0,

φ, |∇φ| → 0, z → −∞,

}
(8)

For x �∈ �m, Eq. (6) still holds, but with β = γ = 0 and combining with (7) gives the usual free-surface
condition

∂φ

∂z
− kφ = 0, on z = 0, where k = ω2

and k is the dimensionless wavenumber (i.e., the dimensionless wavelength is λ = 2π/k). The velocity
potential also satisfies the Sommerfeld radiation condition as |x| → ∞,

lim|x|→∞
√|x|

(
∂

∂|x| − ik
) (
φ − φin) = 0, (9)

(see [20]). In Eq. (9), φin is the incident wave potential given by

φin = A
k

eik(x cos θ+y sin θ) ekz, (10)

where A is the dimensionless amplitude and θ is the direction of propagation of the wave.

3 Transformation to an integral equation

We now invoke Floquet’s theorem (Scott [21]) (also called the assumption of periodicity in the water-wave
context) which states the displacements from adjacent plates differ only by a phase factor. If the potential
under the central plate �0 is given by φ(x0, 0), x0 ∈ �0, then by Floquet’s theorem the potential satisfies

φ(xm, 0) = φ(x0, 0)eimσ l, (11)

and the displacement of the plate �m satisfies

w(xm) = w(x0)eimσ l, (12)

where xm ∈ �m, −∞ < m < ∞ and the phase difference is σ = k sin θ (see, for example, [12]).
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A standard approach to the solution of the equations of motion for the water (6–8) is to transform these
equations into a boundary-integral equation using the free-surface Green function for infinite depth (see
[20, 22]). In doing so we obtain

φ(x, 0) = φin(x, 0)+
∞∑

m=−∞

∫
�m

G(x, 0; ξ)
[

kφ(ξ , 0)− w(ξ)
]

dξ , (13)

where ξ = (ξ , η) and G(x, z; ξ) is the free-surface Green function satisfying

∇2G = 0, −∞ < z < 0,
∂G
∂z

− kG = −δ(x − ξ), z = 0,

G, |∇G| → 0, z → −∞.

⎫⎪⎪⎬
⎪⎪⎭

(14)

which, on z = 0, is given by

G(x, 0; ξ) = − 1
4π

(
2

|x − ξ | − πk
[
H0 (k |x − ξ |)+ Y0 (k |x − ξ |)− 2iπJ0 (k |x − ξ |)

])
. (15)

In the above H0 is the Struve function of order zero, J0 is the Bessel function of the first kind of order zero
and Y0 is the Bessel function of the second kind of order zero [23, Chapters 9 and 12].

Using (11) and (12) in (13) we obtain

φ(x, 0) = φin(x, 0)+
∞∑

m=−∞

∫
�0

G(x, 0; ξ + (0, ml))
[
kφ(ξ , 0)− w(ξ)

]
eimσ l dξ

which can be written alternatively as

φ(x, 0) = φin(x, 0)+
∫
�0

GP(x; ξ)
[
kφ(ξ , 0)− w(ξ)

]
dξ , (16)

where the kernel GP (referred to as the periodic Green function) is given by

GP(x; ξ) =
∞∑

m=−∞
G (x, 0; ξ + (0, ml)) eimσ l. (17)

4 Solution of the integral equation

The integral equation (16) is identical to the integral equation for a single plate (see [5]) except for the
modification to the Green function. Furthermore, the periodic Green function GP has the same singu-
larity at x = ξ as the standard free-surface Green function G. We solve Eq. (16) using a higher-order
method, which is explained in detail in [24]. We will briefly outline the solution method here.

We expand the plate potential and displacement as

w(x) ≈
3q∑

i=1

wiχi(x) = �χT(x) �w, φ(x, 0) ≈
3q∑

i=1

φiχi(x) = �χT(x) �φ, (18)

where �w and �φ
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�w =

⎡
⎢⎢⎢⎢⎢⎢⎣

w

∂w
∂x

∂w
∂y

⎤
⎥⎥⎥⎥⎥⎥⎦

, �φ =

⎡
⎢⎢⎢⎢⎢⎢⎣

φ

∂φ

∂x

∂φ

∂y

⎤
⎥⎥⎥⎥⎥⎥⎦

,

are vectors representing the values of the displacement and potential, respectively, and their horizontal
derivatives at the q nodes and �χ is a vector of the associated basis functions. We can express �χT(x) in
terms of the FEM basis functions for non-conforming square element denoted by Nd (x), ([24], and [25,
pp. 229–243]) as

�χT(x) =
(

N∑
d=1

Nd (x) [o]d

)
, (19)

where N is the number of panels and the matrix [o]d is the assembler matrix . Both Nd(x) (which is a 1 × 12
matrix) and [o]d (which is a 12 × 3q matrix) are discussed in detail by Wang and Meylan [24]. Following
Wang and Meylan [24], we call the square element panel.

The equation governing the motion of the plate (6) and the time-harmonic non-dimensionalised ver-
sions of the boundary conditions at the edge of the plate (2), (3) are equivalent to the variational principle
[17, 26] and [27, pp. 185–187], δL = 0 where

L(w) = 1
2

∫
�0

β

[ (
∇2

hw
)2 − 2(1 − ν)

(
∂2w
∂x2

∂2w
∂y2 −

(
∂2w
∂x∂y

)2 )]
+ (1 − kγ )w2 − 2kwφ|z=0 dx. (20)

The three terms in the integrand above represent, respectively, the strain energy of the plate, the accelera-
tion, and the dynamic pressure on the plate. Apart from the plate equation itself, other natural conditions
of δL = 0 are the free-edge conditions described by (2), and (3). Thus, using the variational principle means
that the edge conditions are satisfied indirectly as part of the approximation.

If we now substitute the approximation for w and φ in (18) in the above and minimise (i.e., apply δL = 0),
we obtain

β K �w + (1 − kγ )M �w = k M �φ, (21)

where the stiffness matrix K, is given by

K =
∫
�0

[
∂2 �χ
∂x2

∂2 �χT

∂x2 + ∂2 �χ
∂y2

∂2 �χT

∂y2 + 2 (1 − ν)
∂2 �χ
∂x∂y

∂2 �χT

∂x∂y
+ ν

∂2 �χ
∂x2

∂2 �χT

∂y2 + ν
∂2 �χ
∂y2

∂2 �χT

∂x2

]
dx (22)

and the mass matrix M is given by

M =
∫
�0

�χ(x) �χT(x)dx. (23)

The integral equation (16) is transformed by substituting the approximations for w and φ given by (18) to
obtain

�χT(x) �φ = �χT(x) �φin +
∫
�0

GP(x; ξ)
[
k �χT(ξ) �φ − �χT(ξ) �w

]
dξ (24)

(where where �φin is the representation of φin in the basis functions χ) and then multiplying this equation
by �χ(x) and integrating over �0. This gives us

M �φ = M �φin + k GP �φ − GP �w, (25)

where GP, is given by

GP =
∫
�0

∫
�0

�χ(x)GP(x, ξ) �χT(x)dx dξ . (26)
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We can use Eq. (19) to express the matrices K, M, and GP as

K =
N∑

d=1

[o]T
d

[ ∫
�d

(
∂2NT

d

∂x2

∂2Nd

∂x2

)
+ ν

(
∂2NT

d

∂x2

∂2Nd

∂y2 + ∂2NT
d

∂y2

∂2Nd

∂x2

)

+ 2 (1 − ν)

(
∂2NT

d

∂x ∂y
∂2Nd

∂x ∂y

)
+
(
∂2NT

d

∂y2

∂2Nd

∂y2

)
dx
]

[o]d , (27)

M =
N∑

d=1

[o]T
d

[∫
�d

NT
d (x) Nd (x)dx

]
[o]d , (28)

and

GP =
p∑

e=1

p∑
d=1

[o]T
e

[∫
�e

∫
�d

NT
e (x)GP(x, ξ)Nd (ξ) dx dξ

]
[o]d . (29)

These are the equations which are used to calculate the matrices K, M, and G. The solution for �w and �φ is
then found by solving Eq. (21) simultaneously with (25).

5 Accelerating the convergence of the periodic Green function

The spatial representation of the periodic Green function given by Eq. (17) is slowly convergent and
in the far field the terms decay in magnitude like O(n−1/2). In this section we show how to accel-
erate the convergence. We begin with the asymptotic approximation of the three-dimensional Green
function (15) far from the source point,

G(x, 0; ξ) ∼ − ik
2

H0(k|x − ξ |), as |x − ξ | → ∞, (30)

[20] where H0 ≡ H(1)
0 is the Hankel function of the first kind of order zero [23]. In [12] various methods

were described in which the convergence of the periodic Green functions was improved. One such method,
which suits the particular problem being considered here, involves writing the periodic Green function as

GP(x; ξ) =
∞∑

m=−∞

[
G (x; ξ + (0, ml))+ ik

2
H0

(
k
√
(X + cl)2 + Y2

m

)]
eimσ l

−
∞∑

m=−∞

ik
2

H0

(
k
√
(X + cl)2 + Y2

m

)
eimσ l, (31)

where c is a numerical smoothing parameter, introduced to avoid the singularity at x = ξ in the Hankel
function and

X = x − ξ , and Ym = (y − η)− ml.

Furthermore we use the fact that second slowly convergent sum in (31) can be transformed to

− i
l

∞∑
m=−∞

eikμm|X+c| eiσmY0

μm
(32)

[12, 28, 29] where σm = σ + 2mπ/l and

μm =
[

1 −
(σm

k

)2
] 1

2

,
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where the positive real or positive imaginary part of the square root is taken. Combining Eqs. (31) and
(32) we obtain the accelerated version of the periodic Green function

GP(x; ξ) =
∞∑

m=−∞

[
G (x; ξ + (0, ml))+ ik

2
H0

(
k
√
(X + cl)2 + Y2

m

)]
eimσ l

− i
l

∞∑
m=−∞

eikμm|X+cl|eiσmY0

μm
. (33)

The convergence of the two sums in (33) depends on the value of c. For small c the first sum converges
rapidly while the second converges slowly. For large c the second sum converges rapidly while the first
converges slowly. The smoothing parameter c must be carefully chosen to balance these two effects. Of
course, the convergence also depends strongly on how close together the points x and ξ are.

Note that some special combinations of wavelength λ and angle of incidence θ cause the periodic Green
function to diverge [21, 28]. This singularity is closely related to the diffracted waves and will be explained
shortly.

6 The scattered waves

We begin with the accelerated periodic Green function, Eq. (33), setting c = 0 and considering the case
when X is large (positive or negative). We also note that for m sufficiently small or large iμm will be
negative and the corresponding terms will decay. Therefore

GP(x; ξ) ∼ − i
l

N∑
m=−M

eikμm|X| eiσmY0

μm
, as X → ±∞, (34)

where the integers M and N satisfy the following inequalities

σ−M−1 < −k < σ−M,
σN < k < σN+1.

}
(35)

Equations (35) can be written as

l
2π

(σ + k − 2π) < M <
l

2π
(σ + k) , (36)

and

l
2π

(k − σ) > N >
l

2π
(k − σ − 2π) (37)

[12]. It is obvious that GP will diverge if σm = ±k; these values correspond to cut-off frequencies which are
an expected feature of periodic structures.

6.1 The diffracted waves

The diffracted waves are the plane waves which are observed as x → ±∞. Their amplitude and form are
obtained by substituting the limit of the periodic Green function (34) as x → ±∞ in the boundary-integral
equation for the potential (16). This gives us

lim
x→±∞φ

s(x, 0) = − i
l

N∑
m=−M

∫
�0

eikμm|X|eiσmY0

μm

[
kφ(ξ , 0)− w(ξ)

]
dξ , (38)
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where φs = φ−φin is the scattered wave which is composed of a finite number of plane waves. For x → −∞
the scattered wave is given by

lim
x→−∞φ

s(x, 0) = A−
m eikμmxeiσmy, (39)

where the amplitudes A−
m are identified from (38) as

A−
m = − i

μml

∫
�0

eikμmξe−iσmη
[
kφ (ξ)− w(ξ)

]
dξ . (40)

Likewise as x → ∞ the scattered wave is given by

lim
x→∞φ

s(x, 0) = A+
me−ikμmxeiσmy, (41)

where A+
m are

A+
m = − i

μml

∫
�0

e−ikμmξe−iσmη
[
kφ(ξ , 0)− w(ξ)

]
dξ . (42)

The diffracted waves propagate at various angles with respect to the normal direction of the array. The
angles of diffraction, ψ±

m , are given by

ψ±
m = tan−1

(
σm

±kμm

)
. (43)

Notice that for m = 0 we have

ψ±
0 = ±θ , (44)

where θ is the incident angle. This is exactly as expected since we should always have a transmitted wave
which travels in the same direction as the incident wave and a reflected wave which travels in the negative
incident-angle direction.

6.2 The fundamental reflected and transmitted waves

We need to be precise when we determine the wave of order zero at x → ∞ because we have to include
the incident wave. There is always at least one set of propagating waves corresponding to m = 0 which
correspond to simple reflection and transmission. The coefficient, R, for the fundamental reflected wave
for the m = 0 mode is given by

R = A−
0 = − i

μ0l

∫
�0

eik(ξ cos θ−η sin θ) [kφ(ξ , 0)− w(ξ)
]

dξ . (45)

The coefficient, T, for the fundamental transmitted wave for the m = 0 mode is given by

T = 1 + A+
0 = 1 − i

μ0l

∫
�0

e−ik(ξ cos θ+η sin θ)
[
kφ(ξ , 0)− w(ξ)

]
dξ . (46)

6.3 Conservation of energy

The diffracted wave, taking into account the correction for T, must satisfy the energy-flux equation. This
simply says that the energy of the incoming wave must be equal to the energy of the outgoing waves. This
gives us

cos θ =
(
|R|2 + |T|2

)
cos θ +

N∑
m=−M
m �=0

(
|A−

m|2 cosψ−
m + |A+

m|2 cosψ+
m

)
. (47)

The energy-balance equation (47) can be used as an accuracy check on the numerical results.
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Fig. 3 The reflection coefficient R (solid line) and the transmission coefficient T (dashed line) as a function of k for a
two-dimensional dock of length 4 for the incident angles shown. The crosses are the same problem solved using the three-
dimensional array code with the dock boundary condition and using plates of geometry 1 with l = 4

7 Results

We tested the convergence of our accelerated version of the Green function and we use c = 0·05 and 44
terms in the first sum (the spatial term) and 46 terms in the second sum (the spectral term) of (33)). These
values were determined by a convergence study, the details of which can be found in Wang [30]. These
values will be used in all our subsequent calculations. We consider four geometries for the plates which are
shown in Fig. 2.

7.1 Scattering from a dock

Aside from the energy-balance equation or wide spacing, it is difficult to compare our results to establish
their validity. However, there is one case in which we can make comparisons. If we consider the case
when we have the dock boundary condition under the plate (so that w = 0) and the plates are square and
joined, then the problem reduces to a two-dimensional dock problem which is discussed extensively in [31,
Chapter 2]. To impose the condition of a dock we simply solve Eq. (25) setting �w to zero (we do not require
Eq. (21)), choosing a square plate (geometry 1) and setting the plate separation to l = 4.

Figure 3 shows the reflection and transmission coefficients for a square plate (geometry 1) with the plate
separation l = 4 and the dock boundary condition (crosses) and the solution to the two-dimensional dock
problem using the method of [31] (solid and dashed lines). As expected the results agree.

Table 1 shows the values of the coefficient A±
m for a dock of geometry 1 with λ = 4, l = 6 and θ = π/6.

These results are given to assist in numerical comparisons.
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Table 1 The coefficients A±
m for the case of a dock of geo- Table 2 The coefficients A±

m for the case of an elastic plate
geometry 1 with λ = 4, l = 6 and θ = π/6 of geometry 1 with β = 0·1, γ = 0, λ = 4, l = 6 and θ = π/6

m A−
m A+

m m A−
m A+

m

−2 −0·214–0·042i 0·232 + 0·023i −2 0·001 + 0·014i −0·040 − 0·016i
−1 0·266–0·268i −0·185 + 0·349i −1 −0·016 − 0·008i −0·070 − 0·099i

0 0·631–0·210i −0·702 − 0·141i 0 −0·058 − 0·072i −0·209 − 0·582i

7.2 Scattering from elastic plates

We begin with a short table of numerical results. Table 2 is equivalent to Table 1 except that the plate is now
elastic with β = 0·1 and γ = 0. As expected the reflected energy is less because the waves can propagate
under the elastic plates. Figures 4 and 5 show the amplitudes of the diffracted waves due to the array as a
function of the incident angle for plates of geometry one and two, respectively, with β = 0·1, γ = 0, k = π/2,
and l = 6. There are three pairs of diffracted waves (including the reflected-transmitted pair) for any angle.
GP diverges if σn = ±k which for our values of l and k means that θ = ±0·3398. As θ moves across these
points, one of the diffracted waves disappears (at ±π/2) and an other appears (at ∓π/2). In the plots we
have plotted A±

−2 and A±
1 with the same line style and also A±

−1 and A±
2 since they represent diffracted

waves which appear and disappear together. Interestingly the result of doing this is to produce smooth
curves for −π/2 < θ < π/2. Figures 4 and 5 show that there is a very strong dependence on the amount of
reflected energy as a function of incident angle with small angles giving the smallest reflection and large
angles giving the greatest reflection.

Figures 6–9 show the real part of the displacement for five plates (�j, j = −2, −1, 0, 1, 2) of the array
for plates of geometry one to four respectively, with β = 0·1, γ = 0, and l = 6. The angle of incidence
is θ = π/6. We consider two values of the wavenumber, k = π/2 (a) and k = π/4 (b). The complex
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Fig. 4 The diffracted waves A±
m for a periodic array of geometry one plates with k = π/2, l = 6,β = 0·1, γ = 0, and l = 6.

The solid line is A±
0 , the chained line is A±

−2 and A±
1 and the dashed line is A±

−1 and A±
2
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Fig. 5 As for Fig. 4 except that the pate has geometry two
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Fig. 6 The real part of the displacement w for five plates of geometry one which are part of a periodic array, l = 6, θ =
π/6,β = 0·1, γ = 0 and (a) k = π/2 and (b) k = π/4 = 8

response of the elastic plates is apparent in these figures, as is the coupling between the water and the
plate. It is also clear that there is a great deal of difference in the individual behaviour of plates of differ-
ent geometries. This has practical implications for experiments which might be performed on individual
ice floes. For example, from these figures it appears that it will be very difficult to make measurements
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Fig. 7 As for Fig. 6 except that the plate is of geometry two

−5

0

5

−15
−10

−5
0

5
10

15
−2

0

2

x

(a)

y

R
e(

w
)

−5

0

5

−15
−10

−5
0

5
10

15
−2

0

2

x

(b)

y

R
e(

w
)

Fig. 8 As for Fig. 6 except that the plate is of geometry three

of wave spectra using an accelerometer deployed on an ice floe if the floe size is comparable to the
wavelength.

In Fig. 10 we consider the total reflected energy ER given by

ER = |R|2 cos θ +
N∑

m=−M
m �=0

|A−
m|2 cosψ−

m (48)
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Fig. 9 As for Fig. 6 except that the plate is of geometry four

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

k

E
R / 

co
s θ

a

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

k

E
R / 

co
s θ

b

Fig. 10 The total reflected energy ER divided by cos θ as a function of k for floes of geometry 1 (a) and 2 (b). l = 6,β =
0·1, γ = 0, and θ = 0 (solid line), π/6 (dashed line), and π/3 (chained line)

as a function of k for l = 6,β = 0·1, and γ = 0 for floes of geometry 1 and 2 and for angles of θ = 0,π/6,
and π/3. In Fig. 10 we have divided ER by cos θ to normalise the curves since, if all the energy is reflected,
ER/ cos θ = 1. This figure shows the kind of important results which we can produce from our model, even
with some simple calculations. The results show that for k < 1 there is no scattering of energy at all. While
it is to be expected that long-wavelength waves will not be strongly scattered, this figure gives us a quan-
titative value for the k below which there is negligible scattering. As k increases the reflection increases
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and this increase is much more marked for waves incident at a large angle. This is to be expected, since
waves which are normally incident can be expected to pass through the plates, even for short wavelengths.
However, the effect of angle appears to be much stronger than might be expected on a simple geometric
argument (which is also what was found in Figs. 4 and 5). Interestingly, the effect of geometry is much less
significant than either θ or k. This implies that for practical purposes it may be sufficient to take one or
two representative geometries. This seems surprising given the differences in the responses of plates of
different geometries shown in Figs. 6 to 9. Figure 10 can be regarded as a preliminary figure, showing the
kinds of calculations which are required to develop a model for wave scattering in the marginal ice zone
from the present results.

8 Concluding remarks

Motivated by the problem of modelling wave propagation in the marginal ice zone and by the general
problem of scattering by arrays of bodies, we have presented a solution to the problem of wave scattering
by an infinite array of floating elastic plates. The model is based on the linear theory and assumes that
the floe submergence is negligible. For this reason, it is applicable to low or moderate wave heights and
to floes whose size is large compared to the floe thickness. The solution method is similar to that used to
solve for a single plate, except that the periodic Green function must be used. The periodic Green function
is obtained by summing the free-surface Green function for all y. However, the periodic Green function
is slowly convergent and therefore a method, which is commonly used in Optics, is devised to accelerate
the convergence. The acceleration method involves expressing the infinite sum of the Green function in its
far-field form. From the far-field representation of the periodic Green function, we calculate the diffracted
wave far from the array and the cut-off frequencies. We have checked our numerical calculations for energy
balance and against the limiting case when the plates are rigid and joined where the solution reduces to
that of a rigid dock. We have also presented solutions for a range of elastic plate geometries.

The solution method could be extended to water of finite depth using a similar periodic Green function,
but in this case based on the free surface Green function for finite depth water. The same problems of
slow convergence would arise and a similar method for convergence of the series would be required. We
believe that a method similar to the one presented here could be used to accelerate the convergence of
the periodic Green function for water of finite depth. Another extension would be to consider a doubly
periodic lattice in which a doubly periodic Green function would be required. This should also be able to
be computed quickly by methods similar to the ones presented here.

The most important extension of this work concerns using it to construct a scattering model for the
marginal ice zone. Such a model would be based on the solutions presented here but would be a far from
trivial extension of it. For a model to be realistic, the effects which have been induced by the assumption of
periodicity would have to be removed. One method to do this would be to consider random spacings of the
ice floes and to average the result over these. This should lead to a scattered wave field over all directions
rather than discrete scattering angles as well as a reflected and transmitted wave. These solutions would
then have to be combined, again with some kind of averaging and wide spacing approximation, to compute
the scattering by multiple rows of ice floes.
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